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We propose a device acting as a spin valve which is based on a double quantum dot structure with parallel
topology. Using the exact analytical solution for the noninteracting case we argue that, at a certain constellation
of system parameters and externally applied fields, the electric current through the constriction can become
almost fully spin polarized. We discuss the influence of the coupling asymmetry, finite temperatures, and
interactions on the efficiency of the device and make predictions for the experimental realization of the effect.
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Future progress in the recently very fast developing field
of spintronics heavily depends on reliable techniques for the
generation and detection of spin-polarized electric currents.1

While the majority of proposed devices uses ferromagnetic
electrodes of some form or interaction effects in quantum
wires,2,3 purely semiconductor-based structures possess a
number of advantages such as lower power consumption and
smaller dimensions as well as better integration options into
the conventional circuitry. Probably the best-studied elemen-
tary structures are quantum point contacts and quantum dots
which can, among other things, be used to induce spin cur-
rents. Up to now numerous studies have been devoted to the
investigation of these possibilities, to name just a few of
them.4–6 In its simplest form, a quantum dot is just an iso-
lated electronic energy level coupled to a number of metallic
electrodes by tunneling �and possibly capacitively�. The
transmission coefficient is then of Lorentzian shape with half
width � given by the contact transparency between the dot
and the electrode. Its resonant behavior immediately sug-
gests one possibility for spin-polarized current generation;
the Zeeman splitting of the level in a finite external field
leads to different transmission probabilities for electrons
with different spin orientation �the magnetic field is assumed
to be finite only on the dot�. This method is, however, ex-
tremely inefficient since the level splitting is on the order of
0.025 meV/T for GaAs-based heterostructures and thus even
in strong fields significantly smaller than the typical � rang-
ing between 0.1 and 10 meV.7–9 Generally, the current
through the constriction grows with increasing � such that a
compromise must be arranged between the spin-polarization
quality factor and the current strength. Therefore one has to
search for systems which show up transmission properties
with even higher degree of nonlinearity than that of a simple
�noninteracting� dot. Exactly this situation can be found in
double quantum dot systems.10

In general, a double quantum dot structure even in its
simplest incarnation, in which it is modeled by two coupled
Anderson impurities, is described by a large number of pa-
rameters. The corresponding Hamiltonian is given by 11

H = H0 + HI + HT. �1�

H0 is the part describing the two dots �i=1,2� via respective
fermion creators/annihilators di,�

† ,di,� with spin variable �
= ↑ , ↓ =� and two �left/right, �=L ,R� metallic electrodes.
These are modeled by free fermionic continua with field op-

erators ��,��x�, which are kept at chemical potentials ��,

H0 = �
�,�

H����,�� + �
�

�
i=1,2

�Ei + �Bg�h/2�di,�
† di,�, �2�

where Ei are the bare dot level energies, �B is the Bohr’s
magneton, and g and h are the Landé factor and magnetic
field, respectively. Electron exchange between the electrodes
and the dots is accomplished by

HT = �
i,�,�

�i,�di,�
† ��,��0� + ��d1,�

† d2,� + H.c., �3�

where �i,� is the tunneling amplitude between dot i and elec-
trode � and �� is responsible for the electron exchange be-
tween the dots. The tunneling is assumed to be local and
occur at x=0 in the coordinate system of the respective elec-
trode. In general, the tunneling amplitudes are allowed to be
complex. Finally, the interactions in the system are taken into
account via the last term,

HI = �
i

Uini,↑ni,↓ + �
�,��

U�n1,�n2,��, �4�

where ni,�=di,�
† di,�. Ui is responsible for the intradot interac-

tion and U� describes the interdot correlation.
In order to illustrate our idea, we first neglect the interac-

tions, use ��=0 and equalize all other tunneling amplitudes
to �. Transport in such a setup has been investigated in great
detail in a number of works, see, e.g., Refs. 12–15. The
fundamental result for the energy-dependent transmission co-
efficient reads16

D0�	� =
�2

�1/�	 − E1� + 1/�	 − E2��−2 + �2 , �5�

where �=2
�0���2 is the dot-lead contact transparency with
dimension of energy. It consists of the tunneling amplitudes
and the local density of states �0 in the leads which are
assumed to be very weakly energy dependent in the relevant
range of energies. When the energies of both dots are equal,
the system is equivalent to the conventional single-site
Anderson model as far as the transmission properties are
concerned. However, contrary to a single-site quantum dot
here perfect reflection is possible when the energy of the
incident particles is given by 	0= �E1+E2� /2 as soon as E1,2
become different. The precise form of this kind of antireso-

PHYSICAL REVIEW B 81, 075110 �2010�

1098-0121/2010/81�7�/075110�5� ©2010 The American Physical Society075110-1

http://dx.doi.org/10.1103/PhysRevB.81.075110


nance can be found by rewriting the transmission coefficient
�Eq. �5�� in the following form:

D0�	� =
�

��2 − E2� �+
2

	2 + �+
2 −

�−
2

	2 + �−
2	 , �6�

where we measure the energy from 	0 and restrict ourselves
to �E, E=E1=−E2. Unsurprisingly it is a difference of two
Lorentz-shaped curves with the widths ��=����2−E2.
The antiresonance thus can be made extremely sharp by
choosing E very small in comparison to � by appropriate
choice of the gate voltages. In presence of the magnetic field
h �we assume that it is not generating any Aharonov-Bohm
phase either due to the small area of the dot structure or due
to its in-plane orientation�, the antiresonance splits in two for
electrons with different spin orientation �,

D��	� = D0�	 + �h� , �7�

where we have redefined h=�Bgh /2 to become the effective
energy scale generated by the magnetic field. Thus the trans-
mission coefficients for the electrons with different spin ori-
entations are completely different, see Fig. 1. In fact, the
electrons with the energy matching their “own” antireso-
nance are perfectly reflected while the ones with opposite
spin orientation can be made to pass through the structure
almost unimpeded. This is in strong contrast to the single dot
structure discussed above, where perfect transport suppres-
sion is difficult to achieve.

Applying finite bias voltage V across the double dot, we
can in fact generate almost fully spin-polarized current as
long as V��− and both chemical potentials are symmetri-
cally arranged around the preselected antiresonance, see Fig.
1. In the experimental realization this procedure would
amount to a fine tuning of the dot level energies E1,2 as well
as of the applied magnetic field. The points where the current

is maximally spin polarized coincide exactly with the points,
where the spin-unresolved �conventional� transmission has a
dip. Needless to say, in analogy to optical polarizators this
effect can also be used for detection of spin-polarized cur-
rents.

There are different mechanisms which can destroy the
interference and thus significantly affect the quality of spin
filtering: �i� finite-temperature effects; �ii� the finite interdot
tunneling amplitude �� as well as the coupling asymmetry;
�iii� the effects of intradot as well as interdot interactions.17

While �i� and �ii� can be �at least, in principle� very well
controlled in experiments the interactions can be influenced
only slightly.

We first analyze the finite-T case. We assume the voltage
applied symmetrically around the �= ↑ =+ antiresonance,
then the spin-resolved currents are given by

I� = G0
 d	D0�	 + h���nF�	 − V/2� − nF�	 + V/2�� ,

�8�

where nF�	�=1 / �exp�	 /T�+1� is the Fermi distribution
function, G0=e2 /h the conductance quantum per spin orien-
tation and the Zeeman splitting of the dot level energies is
taken into account by h+=0 and h−=−2h �Without an addi-
tional gating of the dot levels by h, the antiresonances would,
of course, lie at �h. In order to achieve optimal spin filter-
ing, we choose to perform such adjustment of E1,2�. It is
sensible to make predictions for the universal linear-response
regime first, where the linear conductance G�= I��V� /V at
V→0 is the fundamental quantity. Then for the quality factor
of the spin filtering, we obtain the following result:

q = �G+ − G−

G+ + G−
� , �9�

where G� is defined by

G� =
�

��2 − E2� �
r,s,t=�

rst�r

4
T
���1

2
+ t

ih� + s�r

2
T
	

+ �
r,s=�

s��r�
4
T

���1

2
−

ish� + ��r�
2
T

	 �10�

and �� is the derivative of the digamma function. As a func-
tion of temperature, it is plotted in Fig. 2. Well below T=�
very high-quality factors are achievable. The effect is more
robust for higher values of bare dot energies and applied
local field h. Most of the relevant experiments are performed
at the temperature of 25 mK, which corresponds to the ener-
gies much smaller than typical �. Thus as far as the finite-
temperature effects are concerned, the spin-filtering regime
should be accessible.

As far as the asymmetry and �� issues are concerned
analytical results are possible as well. Interestingly, in both
cases, the perfect destructive interference is still possible.
Hence the spin filter can still be realized as illustrated in the
lower panel of Fig. 1.

The intradot as well as the interdot interactions in the
state-of-the-art experiments are found to range between 0.1�
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FIG. 1. Upper panel: the operation mode of the spin filter. The
energy levels are set to E1,2= �0.5. The offset 2h=0.5 is chosen in
such a way that the efficiency of the filter reaches its maximum
value. All energies are measured in units of �. The shaded area
represents a voltage window for the generation of highly spin-
polarized current. Lower panel: the effect of asymmetric coupling
and interdot tunneling. The Fano line shape can clearly be identi-
fied. Here, the parameters are E1,2= �1, 2h=0.15, �2=0.9, and
��=3.5. All energies are measured in units of �1. The local maxi-
mum of the dotted line coincides with the zero of the solid line to
achieve optimal operation of the spin filter.
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and 10�, see, e.g., Refs. 14 and 18. Despite quite extensive
literature, the fate of the antiresonance in the case of finite
interactions has not yet been addressed. We consider the on-
site interactions with amplitudes U1,2 first. The transmission
coefficient �Eq. �5�� can be found in different ways. One of
them is the straightforward calculation of the scattering am-
plitude of a structure consisting of two Y-shaped junctions
arranged in a ring geometry with two inputs and outputs
between which the two dots are arranged.19,20 It is the special
property of the dot scattering phases or reflection/
transmission amplitudes r� , t� as functions of energy 	,
which give rise to the antiresonance. In the noninteracting
case, they are given by16

r� =
− i�

	 − E� − i�
, t� =

	 − E�

	 − E� − i�
. �11�

Being plugged into the expression for the full transmission of
the structure,19

D0 = 4� t1t2r̄1 − t̄1t2r2 − t1t2r̄1 + t̄1t̄2r2

t1t2 − t̄1t̄2 − t̄2r1 − t̄1r2 + t̄1r̄2
�2

�12�

they immediately lead to Eq. �5�. In fact, amplitudes in Eq.
�11� are related to the retarded Green’s function �GF� of the
individual dots,21,22

G�
R�	� =

1

	 − E� + i�
. �13�

This relation inspires a procedure how to include the intradot
interactions into our analysis. We assume that at least for
weak correlations, the transmission amplitudes still can be
extracted from the retarded GF. Later we shall access the
quality of this approximation. The retarded GF for the case
with finite interactions is known to possess the
representation,22

G�
R�	� =

1

	 − E� − Re �R�	� + i�� − Im �R�	��
, �14�

where �R�	� is the self-energy due to the onsite interaction.
Because we are only interested in the transmission properties
around 	=0, it is sufficient to possess information about the
self-energy behavior around this point. A good approxima-
tion for the self-energy is the one of the ordinary Anderson
impurity model. Luckily, there is a low-energy expansion for
this �R�	� due to Refs. 22–27. The main message is that the
leading-order expansion in 	 is provided by the correction to
the real part,28

Re ���
R �	� = �c�E� + U/2� + �h�s + �1 −

�c − �s

2
		 + ¯ ,

�15�

where �c,s are the static charge/spin susceptibilities and are
known for arbitrary U from the Bethe ansatz calculations.27

�E�+U /2� plays the role of the electron-hole symmetry-
breaking field. Thus we conclude that up to the finite shift
�E�=Re ���

R �0�, the antiresonance survives and we expect
the same quality of spin filtering is achievable. The next
question about the antiresonance width can only be answered
with the next order expansion in 	 at hand. Since the leading
order for the imaginary part of the self-energy is 	2 �which is
not surprising since it is responsible for the dissipative part
and thus for inelastic processes�, the form of the antireso-
nance is dominated by the second term of Eq. �15�. Then the
transmission is given by

D0 =
�2

�2 + � 1

	
�1c − �1s

2
− �E1 + �E1�

+
1

	
�2c − �2s

2
− �E2 + �E2��

−2 .

In case of a small-U expansion, one can rewrite this again as
a sum of two Lorentzians.26,29 Apart from a rescaling of the
��→�� /� where �= U2

2
2 �3− 
2

4 + � 25
3 − 3
2

4 � E2

�3 �, one finds Eq.
�6�. The effects of higher-order terms of 	 can be understood
using the U-expansion results of Ref. 26. To illustrate their

influence on the transmission, we plotted the antiresonance
upon inclusion of the 	2 terms in Fig. 3. The effect of inter-
actions on the quality factor of spin filtering is presented in
Fig. 4.

We analyzed the quality of the above approximation com-
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FIG. 2. Temperature dependence of the quality factor as defined
in Eq. �9�. Main plot: as a function of the dot energies E
= �0.5,0.75,0.95�= �solid,dotted,dot dashed� for fixed h=0.5. In-
set: the same for E=0.95 and different magnetic fields h
= �0.1,0.25,0.5�. All energies are measured in units of �.
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paring it to the perturbation theory in U for the transport
current. It turns out to be given by

I �
 d	�nL − nR�Deff�	� , �16�

where nL,R denote the Fermi distribution functions in the L ,R
electrodes and where the effective trasmission coefficient
Deff is completely voltage independent. Deff is in fact recov-
ered in the lowest order in U expansion of Eq. �12�. So at
least for weak U, our approximation scheme provides results
which deviate from the exact ones in the higher orders of U
only.

Interactions between electrons on different dots are often
weak in comparison to U1,2. Thus we can treat them pertur-
batively in U� again calculating the corrections to the elec-
tric current. It is a tedious but straightforward calculation so

we suppress the details. Already in the lowest order, the cor-
rection to the transmission coefficient reveals an interesting
effect of antiresonance enhancement, see Fig. 5. While the
intradot interactions appear to narrow the antiresonance, the
effect of the interdot interactions is quite the opposite.

As we have shown above, the perfect antiresonance is not
destroyed by the not too strong Coulomb interactions within
the device. However, we expect that this is not the case as
soon as interactions with the environment are included.
These effects can be discussed by modifying the respective
dot Green’s function �14� or using the appropriate self-
energy. It is not only possible to analyze perturbations with
particle exchange with the environment �leakage currents,
etc.� but also to include interactions with phonon baths and
electromagnetic environments.

To conclude, we propose a device for spin-polarized cur-
rent generation and detection. It is based on the double quan-
tum dot structure and operates around the antiresonance in
transmission achieved at certain constellation of dot param-
eters and external fields. We discuss the quality factor of spin
filtering as well as its robustness against intrinsic and extrin-
sic factors such as finite temperature, interaction effects, and
contact to the environment. We expect that the discussed
spin-filtering techniques can be implemented in the up-to-
date double quantum dot devices such as those presented in
Refs. 14 and 30.
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